Stiffness as a control factor for object manipulation

Author:

Kennedy Scott D.1,Schwartz Andrew B.12

Affiliation:

1. Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania

2. Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania

Abstract

During manipulation, force is exerted with the expectation that an object will move in an intended manner. This prediction is a learned coordination between force and movement. Mechanically, impedance is a way to describe this coordination, and object interaction could be anticipated by setting impedance before the hand moves the object. This strategy would be especially important at the end of a reach, because feedback is ineffective for rapid force changes. Since mechanical impedance is not subject to the time delays of feedback, it can, if set properly, produce the desired motion on impact. We examined this possibility by instructing subjects to move a handle to a specific target position along a track. The handle was locked in place until the subject exerted enough force to cross a threshold; the handle was then released abruptly to move along the track. We hypothesized that this ballistic release task would encourage subjects to modify impedance in anticipation of the upcoming movement and found that one component of impedance, stiffness, varied in a way that matched the behavioral demands of the task. Analysis suggests that this stiffness was set before the handle moved and governed the subsequent motion. We also found separate components of muscle activity that corresponded to stiffness and to changes in force. Our results show that subjects used a robust and efficient strategy to coordinate force and displacement by modulating muscle activity in a way that was behaviorally relevant in the task. NEW & NOTEWORTHY The arm can behave like a spring, and this mechanical behavior can be advantageous in situations requiring rapid changes in force and/or displacement. Selection of a proper “virtual” spring before the occurrence of a rapid transient could facilitate a desired responsive movement. We show that these spring-like arm mechanics, set in anticipation of an instantaneous force change, function as an efficient strategy to control movement when feedback is ineffective.

Funder

Google

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3