Physiological Basis of Limb-Impedance Modulation During Free and Constrained Movements

Author:

Damm Loïc,McIntyre Joseph

Abstract

Arm stiffness is a critical factor underlying stable interactions with the environment. When the hand moves freely through space, a stiff limb would most effectively maintain the hand on the desired path in the face of external perturbations. Conversely, when constrained by a rigid surface, a compliant limb would allow the surface to guide the hand while minimizing variations in contact forces. We aimed to identify the physiological basis of stiffness adaptation for these two classes of movement. Stiffness can be regulated by two mechanisms: coactivation of antagonistic muscles and modulation of reflex gains. We hypothesized that subjects would select high stiffness (high coactivation and/or reflex gains) in free space and high compliance (low coactivation and reflex gains) for constrained movements. We measured EMG and the H-reflex during constrained and unconstrained movement of the wrist. As predicted, subjects coactivated antagonist muscles more when performing the unconstrained movement. Contrary to our hypothesis, however, H-reflex amplitude was higher for the constrained movement despite the a priori preference for lower reflex gains in this situation. In addition, the H-reflex depended on the task and the net force exerted by the limb on the environment, rather than showing a simple dependence on the level of muscle activation. Thus stiffness seems to increase in free space compared with constrained motion through the use of coactivation, whereas spinal loop gains are adjusted to better regulate the influence of afferences on the ongoing movement. These observations support the hypothesis of movement programming in terms of impedance.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3