Hysteresis reduction in proprioception using presynaptic shunting inhibition

Author:

Hatsopoulos N. G.1,Burrows M.1,Laurent G.1

Affiliation:

1. Computation and Neural Systems Program, California Institute ofTechnology, Pasadena 91125, USA.

Abstract

1. The tonic responses of angular-position-sensitive afferents in the metathoracic chordotonal organ of the locust leg exhibit much hysteresis. For a given joint angle, the ratio of an afferent's tonic firing rate after extension to its firing rate after flexion (or vice versa) is typically between 1.2:1 and 3:1 but can be as large as 10:1. Spiking local interneurons, that receive direct inputs from these afferents, can, by contrast, exhibit much less hysteresis (between 1.1:1 and 1.2:1). We tested the hypothesis that presynaptic inhibitory interactions between afferent axons reduces the hysteresis of postsynaptic interneurons by acting as an automatic gain control mechanism. 2. We used two kinds of neural models to test this hypothesis: 1) an abstract nonspiking neural model in which a multiplicative, shunting term reduced the "firing rate" of the afferent and 2) a more realistic compartmental model in which shunting inhibition presynaptically attenuated the amplitude of the action potentials reaching the afferent terminals. 3. The abstract neural model demonstrated the automatic gain control capability of a network of laterally inhibited afferent units. A postsynaptic unit, which was connected to the competitive network of afferents, coded for joint angle without saturating as the strength of the afferent input increased by two orders of magnitude. This was possible because shunting inhibition exactly balanced the increase in the excitatory input. This compensatory mechanism required the sum of the excitatory and inhibitory conductances to be much larger than the leak conductance. This requirement suggested a graded weighting scheme in which the afferent recruited first (i.e., at a small joint angle) received the largest inhibition from each of the other afferents because of the lack of active neighbors, and the afferent recruited last (i.e., at a large joint angle) received the least inhibition because all the other afferents were active. 4. The compartmental model demonstrated that presynaptic shunting inhibition between afferents could decrease the average synaptic conductance caused by the afferents onto the spiking interneuron, thereby counterbalancing the afferents' large average firing rates after movements in the preferred direction. Therefore the total postsynaptic input per unit time did not differ much between the preferred and nonpreferred directions.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3