Dynamics of visually guided auditory plasticity in the optic tectum of the barn owl

Author:

Brainard M. S.1,Knudsen E. I.1

Affiliation:

1. Department of Neurobiology, Stanford University, California94305-5401, USA.

Abstract

1. In the optic tectum of normal barn owls, bimodal (auditory-visual) neurons are tuned to the values of interaural time difference (ITD) that are produced by sounds at the locations of their visual receptive fields (VRFs). The auditory tuning of tectal neurons is actively guided by visual experience during development: in the tectum of adult owls reared with an optically displaced visual field, neurons are tuned to abnormal values of ITD that are close to the values produced by sounds at the locations of their optically displaced VRFs. In this study we investigated the dynamics of this experience-dependent plasticity. 2. Owls were raised from shortly after eye-opening (14-22 days of age) with prismatic spectacles that displaced the visual field to the right or left. Starting at approximately 60 days of age, multiunit recordings were made to assess the tuning of tectal neurons to ITD presented via earphones. In the earliest recording sessions (ages 60-80 days), ITD tuning was often close to normal, even though the majority of the owls' previous experience was with an altered correspondence between ITD values and VRF locations. Subsequently, over a period of weeks, responses to the normal range of ITDs were gradually eliminated while responses to values of ITD corresponding with the optically displaced VRF were acquired. 3. At intermediate stages in this process, the ITD tuning at many sites became abnormally broad, so that responses were simultaneously present to both normal values of ITD and to values corresponding with the optically displaced VRF. At this stage the latencies and durations of newly acquired responses systematically exceeded the latencies and durations of the responses to normal values of ITD. 4. Dynamic changes in ITD tuning similar to those recorded in the optic tectum also occurred in the external nucleus of the inferior colliculus (ICX), which provides the major source of ascending auditory input to the tectum. 5. These results suggest the hypothesis that the neural selectivity for ITD in the barn owl's tectum is first established by vision-independent mechanisms and only subsequently calibrated by visual experience. This calibration involves both the elimination of responses to normal values of ITD and the visually guided acquisition of responses to novel values and can be accounted for by plasticity at the level of the ICX.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3