Experience-Dependent Plasticity in Nucleus Laminaris of the Barn Owl

Author:

Carr Catherine E.ORCID,Wang Tiffany,Kraemer Ira,Capshaw Grace,Ashida Go,Köppl Christine,Kempter Richard,Kuokkanen Paula T.

Abstract

AbstractBarn owls experience increasing interaural time differences (ITDs) during development, because their head width more than doubles in the month after hatching. We therefore hypothesized that their ITD detection circuit might be modified by experience. To test this, we raised owls with unilateral ear inserts that delayed and attenuated the acoustic signal, then measured the ITD representation in the brainstem nucleus laminaris (NL) when they were adult. The ITD circuit is composed of delay line inputs to coincidence detectors, and we predicted that plastic changes would lead to shorter delays in the axons from the manipulated ear, and complementary shifts in ITD representation on the two sides. In owls that received ear inserts starting around P14, the maps of ITD shifted in the predicted direction, but only on the ipsilateral side, and only in those tonotopic regions that hadnotexperienced auditory stimulation prior to insertion. The contralateral map did not change. Experience-dependent plasticity of the ITD circuit occurs in NL, and our data suggest that ipsilateral and contralateral delays are independently regulated. Thus, altered auditory input during development leads to long-lasting changes in the representation of ITD.Significance StatementThe early life of barn owls is marked by increasing sensitivity to sound, and by increasing ITDs. Their prolonged post-hatch development allowed us to examine the role of altered auditory experience on the development of ITD detection circuits. We raised owls with a unilateral ear insert and found that their maps of ITD were altered by experience, but only in those tonotopic regions that hadnotexperienced auditory stimulation prior to insertion. Thus experience-induced plasticity allows the sound localization circuits to be customized to individual characteristics, such as the size of the head, and potentially to compensate for natural conductive hearing losses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3