Visualization of active neural circuitry in the spinal cord of intact zebrafish

Author:

Fetcho J. R.1,O'Malley D. M.1

Affiliation:

1. Department of Neurobiology and Behavior, State University of New Yorkat Stony Brook 11794-5230.

Abstract

1. One of the major obstacles in studying vertebrate neural networks is the difficulty in simultaneously monitoring activity in a population of neurons. To take advantage of the transparency of larval zebrafish, we used confocal microscopy to look into the spinal cord of immobilized fish to monitor neural responses during an escape behavior. 2. Populations of identified neurons were labeled with a calcium indicator and neural activity was monitored on a millisecond time scale. The calcium dependent nature of the fluorescent signals was confirmed by monitoring the accumulation, diffusion, and removal of calcium that was introduced by electrical and sensory stimulation. 3. Zebrafish, like most swimming vertebrates, have two major classes of motoneurons: large primary motoneurons thought to be used primarily for rapid movements and smaller secondary motoneurons implicated in slower movements. Our optical approach allowed us to ask how these groups of primary and secondary motoneurons respond during the escape behavior--one of the fastest and most forceful motor behaviors produced by vertebrates. 4. We demonstrate a previously unknown synchrony in the response of populations of primary and secondary motoneurons. This synchrony can account for the massive activation of the axial musculature during powerful escapes. Detection of this synchrony depended on the rapid in vivo imaging of activity in this neuronal population. This optical approach will allow functional studies of neuronal populations in the brain and spinal cord of normal and mutant lines of zebrafish.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3