Abstract
AbstractAlthough optical microscopy has allowed us to study the entire brain in early developmental stages, access to the brains of live, adult vertebrates has been limited. Danionella, a genus of miniature, transparent fish closely related to zebrafish has been introduced as a neuroscience model to study the entire adult vertebrate brain. However, the extent of optically accessible depth in these animals has not been quantitatively characterized. Here, we show that two- and three-photon microscopy can be used to access the entire depth of the adult wild type Danionella dracula brain without any modifications to the animal other than mechanical stabilization. Three-photon microscopy provides high signal to background ratio and optical sectioning through the deepest part of the brain. While vasculature can be observed with two-photon microscopy, the deeper regions have low contrast. We show that multiphoton microscopy is ideal for readily penetrating the entire adult brain within the geometry of these animals’ head structures and without the need for pigment removal. With multiphoton microscopy enabling optical access to the entire adult brain and a repertoire of methods that allow observation of the larval brain, Danionella provides a model system for readily studying the entire brain over the lifetime of a vertebrate.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献