Whole-brain optical access in small adult vertebrates with two- and three-photon microscopy

Author:

Akbari NajvaORCID,Tatarsky Rose L,Bass Andrew H,Xu Chris

Abstract

AbstractAlthough optical microscopy has allowed us to study the entire brain in early developmental stages, access to the brains of live, adult vertebrates has been limited. Danionella, a genus of miniature, transparent fish closely related to zebrafish has been introduced as a neuroscience model to study the entire adult vertebrate brain. However, the extent of optically accessible depth in these animals has not been quantitatively characterized. Here, we show that two- and three-photon microscopy can be used to access the entire depth of the adult wild type Danionella dracula brain without any modifications to the animal other than mechanical stabilization. Three-photon microscopy provides high signal to background ratio and optical sectioning through the deepest part of the brain. While vasculature can be observed with two-photon microscopy, the deeper regions have low contrast. We show that multiphoton microscopy is ideal for readily penetrating the entire adult brain within the geometry of these animals’ head structures and without the need for pigment removal. With multiphoton microscopy enabling optical access to the entire adult brain and a repertoire of methods that allow observation of the larval brain, Danionella provides a model system for readily studying the entire brain over the lifetime of a vertebrate.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3