Affiliation:
1. School of Kinesiology, The University of British Columbia, Vancouver, British Columbia, Canada
Abstract
Standing balance is often threatened in everyday life. These threats typically involve scenarios in which either the likelihood or the consequence of falling is higher than normal. When cats are placed in these scenarios they respond by increasing the sensitivity of muscle spindles imbedded in the leg muscles, presumably to increase balance-relevant afferent information available to the nervous system. At present, it is unknown whether humans also respond to such postural threats by altering muscle spindle sensitivity. Here we present two studies that probed the effects of postural threat on spinal stretch reflexes. In study 1 we manipulated the threat associated with an increased consequence of a fall by having subjects stand at the edge of an elevated surface (3.2 m). In study 2 we manipulated the threat by increasing the likelihood of a fall by occasionally tilting the support surface on which subjects stood. In both scenarios we used Hoffmann (H) and tendon stretch (T) reflexes to probe the spinal stretch reflex circuit of the soleus muscle. We observed increased T-reflex amplitudes and unchanged H-reflex amplitudes in both threat scenarios. These results suggest that the synaptic state of the spinal stretch reflex is unaffected by postural threat and that therefore the muscle spindles activated in the T-reflexes must be more sensitive in the threatening conditions. We propose that this increase in sensitivity may function to satisfy the conflicting needs to restrict movement with threat, while maintaining a certain amount of sensory information related to postural control.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献