The vestibular nerve of the chinchilla. V. Relation between afferent discharge properties and peripheral innervation patterns in the utricular macula

Author:

Goldberg J. M.1,Desmadryl G.1,Baird R. A.1,Fernandez C.1

Affiliation:

1. Department of Pharmacological Sciences, University of Chicago,Illinois 60637.

Abstract

1. The relation between the discharge properties of utricular afferents and their peripheral innervation patterns was studied in the chinchilla by the use of intra-axonal labeling techniques. Fifty-three physiologically characterized units were injected with horseradish peroxidase (HRP) or lucifer yellow CH (LY) and their labeled processes were traced to the utricular macula. For most labeled neurons, the discharge regularity, background discharge, and sensitivity to externally applied galvanic currents were determined, as were the gain (g2 Hz) and phase (phi 2 Hz) of the response to 2-Hz sinusoidal linear forces. Terminal fields were reconstructed and fibers were classified as calyx (n = 13) or dimorphic units (n = 40). No bouton units were recovered. Calyx units were confined to the striola. Dimorphic units were located in the striola (n = 8), the juxtastriola (n = 7), or the peripheral extrastriola (n = 25). 2. To determine whether the intra-axonal sample was representative, the physiological properties of labeled utricular units were compared with those of a larger sample of extracellularly recorded units. A comparison was also made between the morphology of intra-axonally labeled units and those labeled by the extracellular injection of HRP into the vestibular nerve. Most of the discrepancies between the intra-axonal and either extracellular sample can be explained by assuming that small-diameter fibers are underrepresented in the former sample. Dimorphic fibers labeled intra-axonally had more bouton endings and larger terminal trees than did those labeled extracellularly. The latter differences may reflect a sampling bias in the extracellular material. 3. Calyx units were irregularly discharging. The discharge regularity of dimorphic units was related to their macular locations. Only 1/8 dimorphic units in the striola was regularly discharging. The ratio increases to 3/7 in the juxtastriola and to 23/25 in the peripheral extrastriola. Among dimorphic units, there is a tendency for irregularly discharging afferents to have fewer bouton endings. The trend is far from perfect because it is possible to pick a subsample of dimorphic units that have similar numbers of boutons and, yet, have discharge patterns that range from regular to irregular. 4. Published morphological polarization maps can be used to predict the excitatory tilt directions of a unit from its macular location. Predictions were confirmed in 39/41 labeled afferents. 5. The galvanic sensitivity (beta *) of an afferent, irrespective of its peripheral innervation pattern or its epithelial location, was strongly correlated with a normalized coefficient of variation (CV*).(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3