Wavelet transform of single-trial vestibular short-latency evoked potential reveals temporary reduction in signal detectability and temporal precision following noise exposure

Author:

Niwa MamikoORCID,Bauer David,Anderson Marie,Kanicki Ariane,Altschuler Richard A.ORCID,Stewart Courtney E.ORCID,King W. Michael

Abstract

AbstractThe vestibular short-latency evoked potential (VsEP) reflects the activity of irregular vestibular afferents and their target neurons in the brain stem. Attenuation of trial-averaged VsEP waveforms is widely accepted as an indicator of vestibular dysfunction, however, more quantitative analyses of VsEP waveforms could reveal underlying neural properties of VsEP waveforms. Here, we present a time-frequency analysis of the VsEP with a wavelet transform on a single-trial basis, which allows us to examine trial-by-trial variability in the strength of VsEP waves as well as their temporal coherence across trials. Using this method, we examined changes in the VsEP following 110 dB SPL noise exposure in rats. We found detectability of head jerks based on the power of wavelet transform coefficients was significantly reduced 1 day after noise exposure but recovered nearly to pre-exposure level in 3 - 7 days and completely by 28 days after exposure. Temporal coherence of VsEP waves across trials was also significantly reduced on 1 day after exposure but recovered with a similar time course. Additionally, we found a significant reduction in the number of calretinin-positive calyces in the sacculi collected 28 days after noise exposure. Furthermore, the number of calretinin-positive calyces was significantly correlated with the degree of reduction in temporal coherence and/or signal detectability of the smallest-amplitude jerks. This new analysis of the VsEP provides more quantitative descriptions of noise-induced changes as well as new insights into potential mechanisms underlying noise-induced vestibular dysfunction.Significance StatementOur study presents a new method of VsEP quantification using wavelet transform on a single-trial basis. It also describes a novel approach to determine the stimulus threshold of the VsEP based on signal-detection theory and Rayleigh statistics. The present analysis could also be applied to analysis of auditory brain stem response (ABR). Thus, it has the potential to provide new insights into the physiological properties that underlie peripheral vestibular and auditory dysfunction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3