Different responses of CA1 and CA3 regions to hypoxia in rat hippocampal slice

Author:

Kawasaki K.1,Traynelis S. F.1,Dingledine R.1

Affiliation:

1. Department of Pharmacology, University of North Carolina, Chapel Hill27599.

Abstract

1. To study the effects of brief periods of hypoxia on cellular functions in the rat hippocampal slice, extracellular and intracellular recordings were made from pyramidal neurons, and interstitial potassium activity ([K+]o) was measured in the pyramidal cell layers. Slices were perfused in an interface chamber at 36-37 degrees C with medium containing 8.5 mM [K+]o. Hypoxia was induced by switching the overflow gas from O2-CO2 to N2-CO2. 2. Brief periods of hypoxia (5-60 s) produced electrographic seizures with typical tonic and clonic components in 53% of 293 slices that generated spontaneous interictal bursts. Hypoxia-induced seizures were usually initiated in and restricted to the Ca1 region; only 2.5% of these slices generated seizures in CA3. In contrast to the CA1 region, the CA3 region could undergo spreading depression during hypoxia. The probability of seizure generation in CA1 was increased with increasing duration of hypoxia and was greatly reduced by lowering the bath temperature a few degrees. 3. [K+]o gradually increased in the CA1 and CA3 cell layers during the 20 s leading up to an hypoxia-induced seizure. [K+]o rose to approximately 9.8 mM (from a base line of 8.5 mM) in CA1 just before a seizure and to 11.4 mM during the seizure. After hypoxia, [K+]o reached a higher level in CA1 than in CA3, regardless of whether 1 microM tetrodotoxin was present to eliminate differences in cell firing in the two regions. CA1 pyramidal cells and glia gradually depolarized by several millivolts during and after hypoxia; no initial hyperpolarizing phase was detected. 4. Burst input from CA3 was necessary for hypoxia-induced seizures. The frequency and intensity of spontaneous burst-firing in CA3 remained steady in the period leading up to a CA1 seizure episode. In contrast, the intensity of synaptically driven bursts in CA1 grew markedly just before seizure onset. N-methyl-D-aspartate (NMDA) receptors participated in the crescendo of increasingly synchronous activity in CA1, because the competitive NMDA receptor antagonist, D-2-amino-5-phosphonovaleric acid (D-APV, 30 microM), stereoselectively reduced seizure intensity. 5. Hypoxia-induced seizures were followed by a depressant phase, which was manifested most prominently by a prolonged (up to several minutes) reduction in the frequency and intensity of burst-firing in the CA3 region, hyperpolarization of CA1 neurons, and undershoot of [K+]o. In normal (3.5 mM) [K+]o, synaptically driven population spikes in CA1 were only reduced in amplitude by hypoxia; hypoxia did not induce seizures in 3.5 mM [K+]o.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3