Low Glycolysis Is Neuroprotective during Anoxic Spreading Depolarization (SD) and Reoxygenation in Locusts

Author:

Wang (王宇扬) YuyangORCID,Little Alexander G.,Aristizabal Maria J.,Robertson R. MeldrumORCID

Abstract

AbstractMigratory locusts enter a reversible hypometabolic coma to survive environmental anoxia, wherein the cessation of CNS activity is driven by spreading depolarization (SD). While glycolysis is recognized as a crucial anaerobic energy source contributing to animal anoxia tolerance, its influence on the anoxic SD trajectory and recovery outcomes remains poorly understood. We investigated the effects of varying glycolytic capacity on adult female locust anoxic SD parameters, using glucose or the glycolytic inhibitors 2-deoxy-d-glucose (2DG) or monosodium iodoacetate (MIA). Surprisingly, 2DG treatment shared similarities with glucose yet had opposite effects compared with MIA. Specifically, although SD onset was not affected, both glucose and 2DG expedited the recovery of CNS electrical activity during reoxygenation, whereas MIA delayed it. Additionally, glucose and MIA, but not 2DG, increased tissue damage and neural cell death following anoxia-reoxygenation. Notably, glucose-induced injuries were associated with heightened CO2output during the early phase of reoxygenation. Conversely, 2DG resulted in a bimodal response, initially dampening CO2output and gradually increasing it throughout the recovery period. Given the discrepancies between effects of 2DG and MIA, the current results require cautious interpretations. Nonetheless, our findings present evidence that glycolysis is not a critical metabolic component in either anoxic SD onset or recovery and that heightened glycolysis during reoxygenation may exacerbate CNS injuries. Furthermore, we suggest that locust anoxic recovery is not solely dependent on energy availability, and the regulation of metabolic flux during early reoxygenation may constitute a strategy to mitigate damage.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3