Nonlinear Information Processing in a Model Sensory System

Author:

Chacron Maurice J.

Abstract

Understanding the mechanisms by which sensory neurons encode and decode information remains an important goal in neuroscience. We quantified the performance of optimal linear and nonlinear encoding models in a well-characterized sensory system: the electric sense of weakly electric fish. We show that linear encoding models generally perform better under spatially localized stimulation than under spatially diffuse stimulation. Through pharmacological blockade of feedback input and spatial saturation of the receptive field center, we show that there is significantly less synaptic noise under spatially diffuse stimuli as compared with spatially localized stimuli. Modeling results suggest that pyramidal cells nonlinearly encode sensory information through shunting in their dendrites and clarify the influence of synaptic noise on the performance of linear encoding models. Finally, we used information theory to quantify the performance of linear decoders. While the optimal linear decoder for spatially localized stimuli could capture 60% of the information in pyramidal cell spike trains, the optimal linear decoder for spatially diffuse stimuli could only capture 40% of the information. These results show that nonlinear decoders are necessary to fully access information in pyramidal cell spike trains, and we discuss potential mechanisms by which higher-order neurons could decode this information.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3