Stochastic slowly adapting ionic currents may provide a decorrelation mechanism for neural oscillators by causing wander in the intrinsic period

Author:

Norman Sharon E.12,Butera Robert J.13,Canavier Carmen C.45

Affiliation:

1. School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia;

2. Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, Georgia;

3. Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Atlanta, Georgia; and

4. Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana; and

5. Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana

Abstract

Oscillatory neurons integrate their synaptic inputs in fundamentally different ways than normally quiescent neurons. We show that the oscillation period of invertebrate endogenous pacemaker neurons wanders, producing random fluctuations in the interspike intervals (ISI) on a time scale of seconds to minutes, which decorrelates pairs of neurons in hybrid circuits constructed using the dynamic clamp. The autocorrelation of the ISI sequence remained high for many ISIs, but the autocorrelation of the ΔISI series had on average a single nonzero value, which was negative at a lag of one interval. We reproduced these results using a simple integrate and fire (IF) model with a stochastic population of channels carrying an adaptation current with a stochastic component that was integrated with a slow time scale, suggesting that a similar population of channels underlies the observed wander in the period. Using autoregressive integrated moving average (ARIMA) models, we found that a single integrator and a single moving average with a negative coefficient could simulate both the experimental data and the IF model. Feeding white noise into an integrator with a slow time constant is sufficient to produce the autocorrelation structure of the ISI series. Moreover, the moving average clearly accounted for the autocorrelation structure of the ΔISI series and is biophysically implemented in the IF model using slow stochastic adaptation. The observed autocorrelation structure may be a neural signature of slow stochastic adaptation, and wander generated in this manner may be a general mechanism for limiting episodes of synchronized activity in the nervous system.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3