RTHybrid: a standardized and open-source real-time software model library for experimental neuroscience

Author:

Amaducci RodrigoORCID,Reyes-Sanchez ManuelORCID,Elices IreneORCID,Rodriguez Francisco B.ORCID,Varona PabloORCID

Abstract

ABSTRACTClosed-loop technologies provide novel ways of online observation, control and bidirectional interaction with the nervous system, which help to study complex non-linear and partially observable neural dynamics. These protocols are often difficult to implement due to the temporal precision required when interacting with biological components, which in many cases can only be achieved using real-time technology. In this paper we introduce RTHybrid (www.github.com/GNB-UAM/RTHybrid), a free and open-source software that includes a neuron and synapse model library to build hybrid circuits with living neurons in a wide variety of experimental contexts. In an effort to encourage the standardization of real-time software technology in neuroscience research, we compared different open-source real-time operating system patches, RTAI, Xenomai 3 and Preempt-RT, according to their performance and usability. RTHybrid has been developed to run over Linux operating systems supporting both Xenomai 3 and Preempt-RT real-time patches, and thus allowing an easy implementation in any laboratory. We report a set of validation tests and latency benchmarks for the construction of hybrid circuits using this library. With this work we want to promote the dissemination of standardized, user-friendly and open-source software tools developed for open- and closed-loop experimental neuroscience.

Publisher

Cold Spring Harbor Laboratory

Reference76 articles.

1. Abbott, D. (2006). Linux for Embedded and Real-Time Applications (Newnes)

2. Aroca, R. V. and Caurin, G. (2009). A Real Time Operating Systems (RTOS) Comparison. In WSO - Workshop de Sistemas Operacionais. 12

3. Open-ViBE: A Three Dimensional Platform for Real-Time Neuroscience

4. Real-time closed-loop electrophysiology: towards new frontiers in in vitro investigations in the neurosciences;Archives italiennes de biologie,2007

5. A reconfigurable visual-programming library for real-time closed-loop cellular electrophysiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3