Bilateral tremor responses to unilateral loading and fatiguing muscle contractions

Author:

Kavanagh Justin J.1,Cresswell Andrew G.2,Sabapathy Surendran3,Carroll Timothy J.2

Affiliation:

1. Centre for Musculoskeletal Research, Griffith University, Gold Coast, Queensland, Australia;

2. School of Human Movement Studies, Centre for Sensorimotor Neuroscience, The University of Queensland, Brisbane, Queensland, Australia; and

3. Heart Foundation Research Centre, Griffith University, Gold Coast, Queensland, Australia

Abstract

Although physiological tremor has been extensively studied within a single limb, tremor relationships between limbs are not well understood. Early investigations proposed that tremor in each limb is driven by CNS oscillators operating in parallel. However, recent evidence suggests that tremor in both limbs arises from shared neural inputs and is more likely to be observed under perturbed conditions. In the present study, postural tremor about the elbow joint and elbow flexor EMG activity were examined on both sides of the body in response to unilateral loading and fatiguing muscle contractions. Applying loads of 0.5, 1.0, 1.5, and 3.0 kg to a single limb increased tremor and muscle activity in the loaded limb but did not affect the unloaded limb, indicating that manipulating the inertial characteristics of a limb does not evoke bilateral tremor responses. In contrast, maximal-effort unilateral isometric contractions resulted in increased tremor and muscle activity in both the active limb and the nonactive limb without any changes in between-limb tremor or muscle coupling. When unilateral contractions were repeated intermittently, to the extent that maximum torque generation about the elbow joint declined by 50%, different tremor profiles were observed in each limb. Specifically, unilateral fatigue altered coupling between limbs and generated a bilateral response such that tremor and brachioradialis EMG decreased for the fatigued limb and increased in the contralateral nonfatigued limb. Our results demonstrate that activity in the nonactive limb may be due to a “spillover” effect rather than directly coupled neural output to both arms and that between-limb coupling for tremor and muscle activity is only altered under considerably perturbed conditions, such as fatigue-inducing contractions.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3