Phonotactic steering and representation of directional information in the ascending auditory pathway of a cricket

Author:

Lv M.1ORCID,Zhang X.2,Hedwig B.2

Affiliation:

1. Department of Range Land Ecology, China Agricultural University, Beijing, China

2. Department of Zoology, University of Cambridge, Cambridge, United Kingdom

Abstract

Directional hearing is crucial for animals depending on acoustic signals to locate a mate. We focused on crickets to explore the reliability of directional information forwarded to the brain by the ascending auditory interneuron AN1, which is crucial for phonotactic behavior. We presented calling song from −45° to +45° in steps of 3° and compared the phonotactic steering of females walking on a trackball with the directional responses of AN1. Forty percent of females showed good steering behavior and changed their walking direction when the speaker passed the body’s longitudinal axis. The bilateral latency difference between right and left AN1 responses was small and may not be reliable for auditory steering. In respect to spike count, all AN1 recordings presented significant bilateral differences for angles larger than ±18°, yet 35% showed a mean significant difference of 1–3 action potentials per chirp when the frontal stimulus deviated by 3° from their length axis. For small angles, some females had a very similar AN1 activity forwarded to the brain, but the accuracy of their steering behavior was substantially different. Our results indicate a correlation between directional steering and the response strength of AN1, especially for large angles. The reliable steering of animals at small angles would have to be based on small bilateral differences of AN1 activity, if AN1 is the only source providing directional information. We discuss whether such bilateral response difference at small angles can provide a reliable measure to generate auditory steering commands descending from the brain, as pattern recognition is intensity independent. NEW & NOTEWORTHY The ascending auditory interneuron AN1 has been implicated in cricket auditory steering, but at small acoustic stimulation angles, it does not provide reliable directional information. We conclude that either the small bilateral auditory activity differences of the AN1 neurons are enhanced to generate reliable descending steering commands or, more likely, directional auditory steering is mediated via a thoracic pathway, as indicated by the reactive steering hypothesis.

Funder

BBSRC

Royal Society

China Scholarship Council

Cambridge Trust

Trinity College, University of Cambridge

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3