Affiliation:
1. Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
Abstract
ABSTRACT
Sound localisation is a fundamental attribute of the way that animals perceive their external world. It enables them to locate mates or prey, determine the direction from which a predator is approaching and initiate adaptive behaviours. Evidence from different biological disciplines that has accumulated over the last two decades indicates how small insects with body sizes much smaller than the wavelength of the sound of interest achieve a localisation performance that is similar to that of mammals. This Review starts by describing the distinction between tympanal ears (as in grasshoppers, crickets, cicadas, moths or mantids) and flagellar ears (specifically antennae in mosquitoes and fruit flies). The challenges faced by insects when receiving directional cues differ depending on whether they have tympanal or flagellar years, because the latter respond to the particle velocity component (a vector quantity) of the sound field, whereas the former respond to the pressure component (a scalar quantity). Insects have evolved sophisticated biophysical solutions to meet these challenges, which provide binaural cues for directional hearing. The physiological challenge is to reliably encode these cues in the neuronal activity of the afferent auditory system, a non-trivial problem in particular for those insect systems composed of only few nerve cells which exhibit a considerable amount of intrinsic and extrinsic response variability. To provide an integrative view of directional hearing, I complement the description of these biophysical and physiological solutions by presenting findings on localisation in real-world situations, including evidence for localisation in the vertical plane.
Funder
Austrian Science Fund
German Research Foundation
Austria Research Foundation
Austrian Neuroscience Association
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献