Multisensory Cortical Signal Increases and Decreases During Vestibular Galvanic Stimulation (fMRI)

Author:

Bense Sandra1,Stephan Thomas1,Yousry Tarek A.2,Brandt Thomas1,Dieterich Marianne1

Affiliation:

1. Department of Neurology and

2. Department of Neuroradiology, Klinikum Grosshadern, Ludwig-Maximilians University, 81377 Munich, Germany

Abstract

Functional magnetic resonance imaging blood-oxygenation-level-dependent (BOLD) signal increases (activations) and BOLD signal decreases (“deactivations”) were compared in six healthy volunteers during galvanic vestibular (mastoid) and galvanic cutaneous (neck) stimulation in order to differentiate vestibular from ocular motor and nociceptive functions. By calculating the contrast for vestibular activation minus cutaneous activation for the group, we found activations in the anterior parts of the insula, the paramedian and dorsolateral thalamus, the putamen, the inferior parietal lobule [Brodmann area (BA) 40], the precentral gyrus (frontal eye field, BA 6), the middle frontal gyrus (prefrontal cortex, BA 46/9), the middle temporal gyrus (BA 37), the superior temporal gyrus (BA 22), and the anterior cingulate gyrus (BA 32) as well as in both cerebellar hemispheres. These activations can be attributed to multisensory vestibular and ocular motor functions. Single-subject analysis in addition showed distinctly nonoverlapping activations in the posterior insula, which corresponds to the parieto-insular vestibular cortex in the monkey. During vestibular stimulation, there was also a significant signal decrease in the visual cortex (BA 18, 19), which spared BA 17. A different “deactivation” was found during cutaneous stimulation; it included upper parieto-occipital areas in the middle temporal and occipital gyri (BA 19/39/18). Under both stimulation conditions, there were signal decreases in the somatosensory cortex (BA 2/3/4). Stimulus-dependent, inhibitory vestibular-visual, and nociceptive-somatosensory interactions may be functionally significant for processing perception and sensorimotor control.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3