Effect of Noisy Galvanic Vestibular Stimulation on Spatial Learning and Memory of Rats

Author:

Soufinia Bahareh,Lotfi Younes,Mirshekar Mohammad Ali,Shaabani Moslem,Bakhshi Enayatollah

Abstract

Background and Aim: Previous studies have shown promising findings on effectiveness of noisy Galvanic Vestibular Stimulation (nGVS) in various cognitive disorders. The connections of the vestibular system with the hippocampus has been proven. Here we investigated the effect of vestibular galvanic stimulation on the improvement of spatial learning and memory of rats. Methods: Twelve Wistar rats were randomly divided into control and nGVS groups. The nGVS group underwent 30-minute sessions of stimulation at sub-threshold levels for a duration of fourteen days. Following the intervention, both groups underwent assessments of cognitive indices through the Morris water maze task, hippocampal neuronal spike rate by Single-Unit Recording (SUR) and the concentrations of c-fos protein in the hippocampus were measured using ELISA device. Results: The nGVS group exhibited a significant difference compared to the control group in both the time taken to reach the target platform and the percentage of time spent in     the goal quarter during the Morris water maze test. The nGVS treatment significantly enhanced spike rate of hippocampal dentate gyrus (p<0.01) compared to the control group. Additionally, c-fos protein concentrations were increased in the nGVS (5.833) than the control group (4.126), (p<0.001). Conclusion: According to the obtained results, nGVS plays a role in improving spatial memory, and a longer duration of intervention is suggested to achieve more obvious improvement results.   Keywords: Galvanic vestibular stimulation; spatial cognition; single-unit recording; hippocampus; rat

Publisher

Knowledge E DMCC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3