Electrical Stimuli Patterned After the Theta-Rhythm Induce Multiple Forms of LTP

Author:

Morgan S. L.1,Teyler T. J.1

Affiliation:

1. Department of Neurobiology and Pharmacology, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio 44272-0095

Abstract

The induction of long-term potentiation (LTP) by high-frequency stimulation is considered an acceptable model for the study of learning and memory. In area CA1 calcium influx through N-methyl-d-aspartate receptors (NMDARs; nmdaLTP) and/or L-type voltage-dependent calcium channels (vdccLTP) results in distinct forms of LTP. In the light of significant accumulation of knowledge about patterns of naturally occurring activity in the intact animal, we examined whether the application of stimuli patterned after natural activity induced nmdaLTP and/or vdccLTP. In rat hippocampal slices we examined LTP induced by three types of patterned stimulation short (S-TBS), long (L-TBS), and high-intensity long theta-patterned stimulation (HL-TBS). The patterns of stimulation were applied in control, nifedipine (blocks vdccLTP),d,l-2-amino-5-phosphonovaleric acid (APV; blocks nmdaLTP), or APV and nifedipine containing media. We found that S-TBS resulted in LTP that was completely attenuated in the presence of APV but was unaffected by nifedipine. Thus S-TBS results in the selective induction of nmdaLTP. L-TBS resulted in LTP that was completely blocked by APV and only partially blocked by nifedipine. Therefore L-TBS results in a compoundLTP consisting of both nmdaLTP and vdccLTP components. In the presence of APV, HL-TBS resulted in vdccLTP, and when APV and nifedipine were both present, LTP was completely blocked. Thus HL-TBS results in a vdccLTP in isolation when APV is present. We also examined saturation of S-TBS–induced LTP (nmdaLTP) by applying S-TBS at short intervals. When nifedipine was present, multiple S-TBS trains resulted in a substantially smaller final LTP as compared with controls. We conclude that multiple bursts of S-TBS eventually summate to result in compoundLTP. Stimuli patterned after innate rhythms in the hippocampus effectively induce nmdaLTP (S-TBS), compoundLTP (L-TBS), or vdccLTP (HL-TBS).

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3