Modulation effect of mouse hippocampal neural oscillations by closed-loop transcranial ultrasound stimulation

Author:

Dong Shuxun,Yan Jiaqing,Xie Zhenyu,Yuan YiORCID,Ji Hui

Abstract

Abstract Objective. Closed-loop transcranial ultrasound stimulation (TUS) can be applied at a specific time according to the state of neural activity to achieve timely and precise neuromodulation and improve the modulation effect. In a previous study, we found that closed-loop TUS at the peaks and troughs of the theta rhythm in the mouse hippocampus was able to increase the absolute power and decrease the relative power of the theta rhythm of local field potentials (LFPs) independent of the peaks and troughs of the stimulus. However, it remained unclear whether the modulation effect of this closed-loop TUS-induced mouse hippocampal neural oscillation depended on the peaks and troughs of the theta rhythm. Approach. In this study, we used ultrasound with different stimulation modes and durations to stimulate the peaks (peak stimulation) and troughs (trough stimulation) of the hippocampal theta rhythm. The LFPs in the area of ultrasound stimulation were recorded and the amplitudes and power spectra of the theta rhythm before and after ultrasound stimulation were analyzed. Main results. The results showed that (a) the relative change in amplitude of theta rhythm decreases as the number of stimulation trials under peak stimulation increases; (b) the relative change in the absolute power of the theta rhythm decreases as the number of stimulation trials under peak stimulation increases; (c) the relative change in amplitude of the theta rhythm increases nonlinearly with the stimulation duration (SD) under peak stimulation, and; (d) the relative change in absolute power exhibits a nonlinear increase with SD under peak stimulation. Significance. These results suggest that the modulation effect of closed-loop TUS on theta rhythm is dependent on the stimulation mode and duration under peak stimulation. TUS has the potential to precisely modulate theta rhythm-related neural activity.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

Reference53 articles.

1. Brain neuromodulation techniques: a review;Lewis;Neuroscientist,2016

2. Neuromodulation: present and emerging methods;Luan;Front. Neuroeng.,2014

3. Neuromodulation of brain states;Lee;Neuron,2012

4. Neuromodulation of attention;Thiele;Neuron,2018

5. Neuromodulation of brain state and behavior;McCormick;Annu. Rev. Neurosci.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3