Post-Episode Depression of GABAergic Transmission in Spinal Neurons of the Chick Embryo

Author:

Chub Nikolai1,O'Donovan Michael J.1

Affiliation:

1. Section on Developmental Neurobiology, Laboratory of Neural Control, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892

Abstract

Whole cell recordings were obtained from ventral horn neurons in spontaneously active spinal cords isolated from the chick embryo [ embryonic days 10 to 11 ( E10–E11)] to examine the post-episode depression of GABAergic transmission. Spontaneous activity occurred as recurrent, rhythmic episodes approximately 60 s in duration with 10- to 15-min quiescent inter-episode intervals. Current-clamp recording revealed that episodes were followed by a transient hyperpolarization (7 ± 1.2 mV, mean ± SE), which dissipated as a slow (0.5–1 mV/min) depolarization until the next episode. Local application of bicuculline 8 min after an episode hyperpolarized spinal neurons by 6 ± 0.8 mV and increased their input resistance by 13%, suggesting the involvement of GABAergic transmission. Gramicidin perforated-patch recordings showed that the GABAa reversal potential was above rest potential ( E GABAa = −29 ± 3 mV) and allowed estimation of the physiological intracellular [Cl] = 50 mM. In whole cell configuration (with physiological electrode [Cl]), two distinct types of endogenous GABAergic currents ( I GABAa) were found during the inter-episode interval. The first comprised TTX-resistant, asynchronous miniature postsynaptic currents (mPSCs), an indicator of quantal GABA release (up to 42% of total mPSCs). The second (tonic I GABAa) was complimentary to the slow membrane depolarization and may arise from persistent activation of extrasynaptic GABAa receptors. We estimate that approximately 10 postsynaptic channels are activated by a single quantum of GABA release during an mPSC and that about 30 extrasynaptic GABAa channels are required for generation of the tonic I GABAa in ventral horn neurons. We investigated the post-episode depression of I GABAa by local application of GABA or isoguvacine (100 μM, for 10–30 s) applied before and after an episode at holding potentials ( V hold) −60 mV. The amplitude of the evoked I GABA was compared after clamping the cell during the episode at one of three different V hold: −60 mV, below E GABAa resulting in Cl efflux; −30 mV, close to E GABAa with minimal Cl flux; and 0 mV, above E GABAa resulting in Cl influx during the episode. The amplitude of the evoked I GABA changed according to the direction of Cl flux during the episode: at −60 mV a 41% decrease, at −30 mV a 4% reduction, and at 0 mV a 19% increase. These post-episode changes were accompanied by shifts of E GABAa of −10, −1.2, and +7 mV, respectively. We conclude that redistribution of intracellular [Cl] during spontaneous episodes is likely to be an important postsynaptic mechanism involved in the post-episode depression of GABAergic transmission in chick embryo spinal neurons.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3