Feature Analysis of Natural Sounds in the Songbird Auditory Forebrain

Author:

Sen Kamal1,Theunissen Frédéric E.2,Doupe Allison J.134

Affiliation:

1. Sloan Center for Theoretical Neuroscience,

2. Department of Psychology, University of California, Berkeley, California 94720-1650

3. Department of Psychiatry, and

4. Department of Physiology, University of California, San Francisco 94143-0444; and

Abstract

Although understanding the processing of natural sounds is an important goal in auditory neuroscience, relatively little is known about the neural coding of these sounds. Recently we demonstrated that the spectral temporal receptive field (STRF), a description of the stimulus-response function of auditory neurons, could be derived from responses to arbitrary ensembles of complex sounds including vocalizations. In this study, we use this method to investigate the auditory processing of natural sounds in the birdsong system. We obtain neural responses from several regions of the songbird auditory forebrain to a large ensemble of bird songs and use these data to calculate the STRFs, which are the best linear model of the spectral-temporal features of sound to which auditory neurons respond. We find that these neurons respond to a wide variety of features in songs ranging from simple tonal components to more complex spectral-temporal structures such as frequency sweeps and multi-peaked frequency stacks. We quantify spectral and temporal characteristics of these features by extracting several parameters from the STRFs. Moreover, we assess the linearity versus nonlinearity of encoding by quantifying the quality of the predictions of the neural responses to songs obtained using the STRFs. Our results reveal successively complex functional stages of song analysis by neurons in the auditory forebrain. When we map the properties of auditory forebrain neurons, as characterized by the STRF parameters, onto conventional anatomical subdivisions of the auditory forebrain, we find that although some properties are shared across different subregions, the distribution of several parameters is suggestive of hierarchical processing.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3