Author:
Rivera Moises,Edwards Jacob A.,Hauber Mark E.,Woolley Sarah M. N.
Abstract
AbstractBirdsong is a longstanding model system for studying evolution and biodiversity. Here, we collected and analyzed high quality song recordings from seven species in the familyEstrildidae. We measured the acoustic features of syllables and then used dimensionality reduction and machine learning classifiers to identify features that accurately assigned syllables to species. Species differences were captured by the first 3 principal components, corresponding to basic frequency, power distribution, and spectrotemporal features. We then identified the measured features underlying classification accuracy. We found that fundamental frequency, mean frequency, spectral flatness, and syllable duration were the most informative features for species identification. Next, we tested whether specific acoustic features of species’ songs predicted phylogenetic distance. We found significant phylogenetic signal in syllable frequency features, but not in power distribution or spectrotemporal features. Results suggest that frequency features are more constrained by species’ genetics than are other features, and are the best signal features for identifying species from song recordings. The absence of phylogenetic signal in power distribution and spectrotemporal features suggests that these song features are labile, reflecting learning processes and individual recognition.
Funder
City University of New York
National Research Service Award
Humboldt Foundation Research Award
National Institutes of Health
U.S. National Science Foundation
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献