Multiple Sites of Action Potential Initiation Increase Neuronal Firing Rate

Author:

Baccus Stephen A.1,Sahley Christie L.2,Muller Kenneth J.13

Affiliation:

1. Neuroscience Program and

2. Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907

3. Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33136; and

Abstract

Sensory input to an individual interneuron or motoneuron typically evokes activity at a single site, the initial segment, so that firing rate reflects the balance of excitation and inhibition there. In a network of cells that are electrically coupled, a sensory input produced by appropriate, localized stimulation can cause impulses to be initiated in several places. An example in the leech is the chain of S cells, which are critical for sensitization of reflex responses to mechanosensory stimulation. S cells, one per segment, form an electrically coupled chain extending the entire length of the CNS. Each S cell receives input from mechanosensory neurons in that segment. Because impulses can arise in any S cell and can reliably propagate throughout the chain, all the S cells behave like a single neuron with multiple initiation sites. In the present experiments, well-defined stimuli applied to a small area of skin evoked mechanosensory action potentials that propagated centrally to several segments, producing S cell impulses in those segments. Following pressure to the skin, impulses arose first in the S cell of the same segment as the stimulus, followed by impulses in S cells in other segments. Often four or five separate initiation sites were observed. This timing of impulse initiation played an important role in increasing the frequency of firing. Impulses arising at different sites did not usually collide but added to the total firing rate of the chain. A computational model is presented to illustrate how mechanosensory neurons distribute the effects of a single sensory stimulus into spatially and temporally separated synaptic input. The model predicts that changes in impulse propagation in mechanosensory neurons can alter S cell frequency of firing by changing the number of initiation sites.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3