Action Potential Reflection and Failure at Axon Branch Points Cause Stepwise Changes in EPSPs in a Neuron Essential for Learning

Author:

Baccus Stephen A.1,Burrell Brian D.2,Sahley Christie L.3,Muller Kenneth J.12

Affiliation:

1. Neuroscience Program and

2. Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33136; and

3. Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907

Abstract

In leech mechanosensory neurons, action potentials reverse direction, or reflect, at central branch points. This process enhances synaptic transmission from individual axon branches by rapidly activating synapses twice, thereby producing facilitation. At the same branch points action potentials may fail to propagate, which can reduce transmission. It is now shown that presynaptic action potential reflection and failure under physiological conditions influence transmission to the same postsynaptic neuron, the S cell. The S cell is an interneuron essential for a form of nonassociative learning, sensitization of the whole body shortening reflex. The P to S synapse has components that appear monosynaptic (termed “direct”) and polysynaptic, both with glutamatergic pharmacology. Reflection at P cell branch points on average doubled transmission to the S cell, whereas action potential failure, or conduction block, at the same branch points decreased it by one-half. Each of two different branch points affected transmission, indicating that the P to S connection is spatially distributed around these branch points. This was confirmed by examining the locations of individual contacts made by the P cell with the S cell and its electrically coupled partner C cells. These results show that presynaptic neuronal morphology produces a range of transmission states at a set of synapses onto a neuron necessary for a form of learning. Reflection and conduction block are activity-dependent and are basic properties of action potential propagation that have been seen in other systems, including axons and dendrites in the mammalian brain. Individual branch points and the distribution of synapses around those branch points can substantially influence neuronal transmission and plasticity.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3