Excess Synchrony in Motor Cortical Neurons Provides Redundant Direction Information With That From Coarse Temporal Measures

Author:

Oram Mike W.1,Hatsopoulos Nicholas G.2,Richmond Barry J.3,Donoghue John P.2

Affiliation:

1. School of Psychology, University of St. Andrews, Fife KY16 9JU, United Kingdom;

2. Department of Neuroscience, Brown University, Providence, Rhode Island 02912; and

3. National Institute of Mental Health/National Institutes of Health, Bethesda, Maryland 20892

Abstract

Previous studies have shown that measures of fine temporal correlation, such as synchronous spikes, across responses of motor cortical neurons carries more directional information than that predicted from statistically independent neurons. It is also known, however, that the coarse temporal measures of responses, such as spike count, are not independent. We therefore examined whether the information carried by coincident firing was related to that of coarsely defined spike counts and their correlation. Synchronous spikes were counted in the responses from 94 pairs of simultaneously recorded neurons in primary motor cortex (MI) while monkeys performed arm movement tasks. Direct measurement of the movement-related information indicated that the coincident spikes (1- to 5-ms precision) carry ∼10% of the information carried by a code of the two spike counts. Inclusion of the numbers of synchronous spikes did not add information to that available from the spike counts and their coarse temporal correlation. To assess the significance of the numbers of coincident spikes, we extended the stochastic spike count matched (SCM) model to include correlations between spike counts of the individual neural responses and slow temporal dependencies within neural responses (∼30 Hz bandwidth). The extended SCM model underestimated the numbers of synchronous spikes. Therefore as with previous studies, we found that there were more synchronous spikes in the neural data than could be accounted for by this stochastic model. However, the SCM model accounts for most ( R 2 = 0.93 ± 0.05, mean ± SE) of the differences in the observed number of synchronous spikes to different directions of arm movement, indicating that synchronous spiking is directly related to spike counts and their broad correlation. Further, this model supports the information theoretic analysis that the synchronous spikes do not provide directional information beyond that available from the firing rates of the same pool of directionally tuned MI neurons. These results show that detection of precisely timed spike patterns above chance levels does not imply that those spike patterns carry information unavailable from coarser population codes but leaves open the possibility that excess synchrony carries other forms of information or serves other roles in cortical information processing not studied here.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3