Removal of NMDA Receptor Mg2+ Block Extends the Action of NT-3 on Synaptic Transmission in Neonatal Rat Motoneurons

Author:

Arvanian Victor L.1,Mendell Lorne M.1

Affiliation:

1. Department of Neurobiology and Behavior, SUNY at Stony Brook, Stony Brook, New York 11794-5230

Abstract

NT-3 has previously been reported to enhance AMPA/kainate receptor-mediated synaptic responses in motoneurons via an effect on the N-methyl-d-aspartate (NMDA) receptor. To investigate neurotrophin-3 (NT-3) action further, we measured the NMDA receptor (NMDAR)-mediated synaptic response directly by intracellular recording in motoneurons after blocking AMPA/kainate, GABAA, GABAB and glycine receptor-mediated responses pharmacologically. Two pathways were stimulated, the segmental dorsal root (DR) and the descending ventrolateral fasciculus (VLF). The DR-evoked NMDAR-mediated response in motoneurons of rats younger than 1 wk has two components, the initial one of which is generated monosynaptically. NT-3 strongly potentiated both NMDA components in a rapidly reversible manner. No NMDAR-mediated responses were present at VLF connections and at DR connections in older (1- to 2-wk-old) neonates. Bath-applied NT-3–induced potentiation of the AMPA/kainate receptor-mediated response occurred only at connections that exhibit a synaptic NMDA receptor-mediated response. Reducing Mg2+concentration in the bathing solution restored the NMDAR-mediated response elicited by DR stimulation in older neonates and by VLF throughout the neonatal period (0–2 wk). In low-Mg2+, NT-3 enhanced AMPA/kainate receptor-mediated responses elicited by inputs normally not influenced by NT-3. Thus a major reason for the loss of NT-3 action on AMPA/kainate synaptic responses is the reduced activity of the NMDA receptor due to developing Mg2+ block of NMDA receptor-channel complex as the animal matures, and both can be re-established by reducing Mg2+ concentration in fluid bathing the spinal cord.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3