NT-3 Evokes an LTP-Like Facilitation of AMPA/Kainate Receptor–Mediated Synaptic Transmission in the Neonatal Rat Spinal Cord

Author:

Arvanov Viktor L.1,Seebach Bradley S.1,Mendell Lorne M.1

Affiliation:

1. Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, New York 11794-5230

Abstract

Neurotrophin-3 (NT-3) is a neurotrophic factor required for survival of muscle spindle afferents during prenatal development. It also acts postsynaptically to enhance the monosynaptic excitatory postsynaptic potential (EPSP) produced by these fibers in motoneurons when applied over a period of weeks to the axotomized muscle nerve in adult cats. Similar increases in the amplitude of the monosynaptic EPSP in motoneurons are observed after periodic systemic treatment of neonatal rats with NT-3. Here we show an acute action of NT-3 in enhancing the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA/kainate) receptor–mediated fast monosynaptic EPSP elicited in motoneurons by dorsal root (DR) stimulation in the in vitro hemisected neonatal rat spinal cord. The receptor tyrosine kinase inhibitor K252a blocks this action of NT-3 as does the calcium chelator bis-( o-aminophenoxy)- N, N, N′, N′-tetraacetic acid (BAPTA) injected into the motoneuron. The effect of NT-3 resembles long-term potentiation (LTP) in that transient bath application of NT-3 to the isolated spinal cord produces a long-lasting increase in the amplitude of the monosynaptic EPSP. An additional similarity is that activation of N-methyl-d-aspartate (NMDA) receptors is required to initiate this increase but not to maintain it. The NMDA receptor blocker MK-801, introduced into the motoneuron through the recording microelectrode, blocks the effect of NT-3, indicating that NMDA receptors in the motoneuron membrane are crucial. The effect of NT-3 on motoneuron NMDA receptors is demonstrated by its enhancement of the depolarizing response of the motoneuron to bath-applied NMDA in the presence of tetrodotoxin (TTX). The potentiating effects of NT-3 do not persist beyond the first postnatal week. In addition, EPSPs with similar properties evoked in the same motoneurons by stimulation of descending fibers in the ventrolateral funiculus (VLF) are not modifiable by NT-3 even in the initial postnatal week. Thus, NT-3 produces synapse-specific and age-dependent LTP-like enhancement of AMPA/kainate receptor–mediated synaptic transmission in the spinal cord, and this action requires the availability of functional NMDA receptors in the motoneuron.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3