A Comparison of the Firing Properties of Putative Excitatory and Inhibitory Neurons From CA1 and the Entorhinal Cortex

Author:

Frank Loren M.12,Brown Emery N.2,Wilson Matthew A.1

Affiliation:

1. Center for Learning and Memory, RIKEN-MIT Neuroscience Research Center and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139; and

2. Neuroscience Statistics Research Laboratory, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School/MIT Division of Health Sciences and Technology, Boston, Massachusetts 02114

Abstract

The superficial layers of the entorhinal cortex (EC) provide the majority of the neocortical input to the hippocampus, and the deep layers of the EC receive the majority of neocortically bound hippocampal outputs. To characterize information transmission through the hippocampal and EC circuitry, we recorded simultaneously from neurons in the superficial EC, the CA1 region of hippocampus, and the deep EC while rodents ran for food reward in two environments. Spike waveform analysis allowed us to classify units as fast-spiking (FS) putative inhibitory cells or putative excitatory (PE) cells. PE and FS units' firing were often strongly correlated at short time scales, suggesting the presence a monosynaptic connection from the PE to FS units. EC PE units, unlike those found in CA1, showed little or no tendency to fire in bursts. We also found that the firing of FS and PE units from all regions was modulated by the ∼8 Hz theta rhythm, although the firing of deep EC FS units tended to be less strongly modulated than that of the other types of units. When we examined the spatial specificity of FS units, we determined that FS units in all three regions showed low specificity. At the same time, retrospective coding, in which firing rates were related to past position, was present in FS units from all three regions and deep EC FS units often fired in a “path equivalent” manner in that they were active in physically different, but behaviorally related positions both within and across environments. Our results suggest that while the firing of FS units from CA1 and the EC show similarly low levels of position specificity, FS units from each region differ from one another in that they mirrored the associated PE units in terms of their tendency to show more complex positional firing properties like retrospective coding and path equivalence.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3