Differential Coding of Pain Intensity in the Human Primary and Secondary Somatosensory Cortex

Author:

Timmermann Lars1,Ploner Markus1,Haucke Katrin2,Schmitz Frank1,Baltissen Rüdiger2,Schnitzler Alfons1

Affiliation:

1. Department of Neurology, Heinrich-Heine-University, 40225 Dusseldorf; and

2. Department of Psychology, University of Wuppertal, 42119 Wuppertal, Germany

Abstract

The primary (SI) and secondary (SII) somatosensory cortices have been shown to participate in human pain processing. However, in humans it is unclear how SI and SII contribute to the encoding of nociceptive stimulus intensity. Using magnetoencephalography (MEG) we recorded responses in SI and SII in eight healthy humans to four different intensities of selectively nociceptive laser stimuli delivered to the dorsum of the right hand. Subjects' pain ratings correlated highly with the applied stimulus intensity. Activation of contralateral SI and bilateral SII showed a significant positive correlation with stimulus intensity. However, the type of dependence on stimulus intensity was different for SI and SII. The relation between SI activity and stimulus intensity resembled an exponential function and matched closely the subjects' pain ratings. In contrast, SII activity showed an S-shaped function with a sharp increase in amplitude only at a stimulus intensity well above pain threshold. The activation pattern of SI suggests participation of SI in the discriminative perception of pain intensity. In contrast, the all-or-none–like activation pattern of SII points against a significant contribution of SII to the sensory-discriminative aspects of pain perception. Instead, SII may subserve recognition of the noxious nature and attention toward painful stimuli.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 220 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3