Low-dose inhaled carbon monoxide attenuates the remote intestinal inflammatory response elicited by hindlimb ischemia-reperfusion

Author:

Scott Jeffrey R.,Cukiernik Mark A.,Ott Michael C.,Bihari Aurelia,Badhwar Amit,Gray Daryl K.,Harris Kenneth A.,Parry Neil G.,Potter Richard F.

Abstract

Heme oxygenase (HO) represents the rate-limiting enzyme in the degradation of heme into carbon monoxide (CO), iron, and biliverdin. Recent evidence suggests that several of the beneficial properties of HO, may be linked to CO. The objectives of this study were to determine if low-dose inhaled CO reduces remote intestinal leukocyte recruitment, proinflammatory cytokine expression, and oxidative stress elicited by hindlimb ischemia-reperfusion (I/R). Male mice underwent 1 h of hindlimb ischemia, followed by 3 h of reperfusion. Throughout reperfusion, mice were exposed to AIR or AIR + CO (250 ppm). Following reperfusion, the distal ileum was exteriorized to assess the intestinal inflammatory response by quantifying leukocyte rolling and adhesion in submucosal postcapillary venules with the use of intravital microscopy. Ileum samples were also analyzed for proinflammatory cytokine expression [tumor necrosis factor (TNF)-α and interleukin (IL)-1β] and malondialdehyde (MDA) with the use of enzyme-linked immunosorbent assay and thiobarbituric acid reactive substances assays, respectively. I/R + AIR led to a significant decrease in leukocyte rolling velocity and a sevenfold increase in leukocyte adhesion. This was also accompanied by a significant 1.3-fold increase in ileum MDA and 2.3-fold increase in TNF-α expression. Treatment with AIR + CO led to a significant reduction in leukocyte recruitment and TNF-α expression elicited by I/R; however, MDA levels remained unchanged. Our data suggest that low-dose inhaled CO selectively attenuates the remote intestinal inflammatory response elicited by hindlimb I/R, yet does not provide protection against intestinal lipid peroxidation. CO may represent a novel anti-inflammatory therapeutic treatment to target remote organs following acute trauma and/or I/R injury.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3