Short-term adaptation of postprandial lipoprotein secretion and intestinal gene expression to a high-fat diet

Author:

Hernández Vallejo Sandra Jimena,Alqub Malik,Luquet Serge,Cruciani-Guglielmacci Céline,Delerive Philippe,Lobaccaro Jean-Marc,Kalopissis Athina-Despina,Chambaz Jean,Rousset Monique,Lacorte Jean-Marc

Abstract

Western diet is characterized by a hypercaloric and hyperlipidic intake, enriched in saturated fats, that is associated with the increased occurrence of metabolic diseases. To cope with this overload of dietary lipids, the intestine, which delivers dietary lipids to the body, has to adapt its capacity in lipid absorption and lipoprotein synthesis. We have studied the early effects of a high-fat diet (HFD) on intestinal lipid metabolism in mice. After 7 days of HFD, mice displayed normal fasting triglyceridemia but postprandial hypertriglyceridemia. HFD induced a decreased number of secreted chylomicrons with increased associated triglycerides. Secretion of larger chylomicrons was correlated with increased intestinal microsomal triglyceride transfer protein (MTP) content and activity. Seven days of HFD induced a repression of genes involved in fatty acid synthesis (FAS, ACC) and an increased expression of genes involved in lipoprotein assembly (apoB, MTP, and apoA-IV), suggesting a coordinated control of intestinal lipid metabolism to manage a high-fat loading. Of note, the mature form of the transcription factor SREBP-1c was increased and translocated to the nucleus, suggesting that it could be involved in the coordinated control of gene transcription. Activation of SREBP-1c was partly independent of LXR. Moreover, HFD induced hepatic insulin resistance whereas intestine remained insulin sensitive. Altogether, these results demonstrate that a short-term HFD is sufficient to impact intestinal lipid metabolism, which might participate in the development of dyslipidemia and metabolic diseases.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3