Oxidant stress-induced liver injury in vivo: role of apoptosis, oncotic necrosis, and c-Jun NH2-terminal kinase activation

Author:

Hong Ji-Young,Lebofsky Margitta,Farhood Anwar,Jaeschke Hartmut

Abstract

Oxidant stress is critically involved in various liver diseases. Superoxide formation causes c-Jun NH2-terminal kinase (JNK)- and caspase-dependent apoptosis in cultured hepatocytes. To verify these findings in vivo, male Fisher rats were treated with diquat and menadione. The oxidant stress induced by both compounds was confirmed by increased formation of glutathione disulfide and 4-hydroxynonenal protein adducts. Plasma alanine aminotransferase activities increased from 46 ± 4 U/l in controls to 955 ± 90 U/l at 6 h after diquat treatment. Hematoxylin and eosin staining of liver sections revealed large areas of necrotic cells at 3 and 6 h. DNA strandbreaks, evaluated with the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, showed clusters of TUNEL-positive cells, where the staining was predominantly cytosolic and the cells were swollen, indicating oncotic necrosis. There was no significant increase in caspase-3 activities or relevant release of DNA fragments into the cytosol at any time between 0 and 6 h after diquat treatment. Despite the activation of JNK after high doses of diquat, the JNK inhibitor SP-600125 did not protect against diquat-induced necrosis. Menadione alone did not cause liver injury, but, in combination with phorone and FeSO4, induced moderate oncotic necrosis. On the other hand, if animals were treated with galactosamine/endotoxin as positive control for apoptosis, caspase-3 activities were increased by 259%, the number of TUNEL-positive cells with apoptotic morphology was increased 103-fold, and DNA fragmentation was enhanced 6-fold. The data indicate that liver cell death initiated by diquat-induced superoxide formation in vivo is mediated predominantly by oncotic necrosis and is independent of JNK activation.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3