Template-Based Spike Pattern Identification With Linear Convolution and Dynamic Time Warping

Author:

Chi Zhiyi,Wu Wei,Haga Zach,Hatsopoulos Nicholas G.,Margoliash Daniel

Abstract

Pattern identification for spiking activity, which is central to neurophysiological analysis, is complicated by variability in spiking at multiple timescales. Incorporating likelihood tests on the variability at two timescales, we developed an approach to identifying segments from continuous neurophysiological recordings that match preselected spike “templates.” At smaller timescales, each component of the preselected pattern is represented by a linear filter. Local scores to measure the similarities between short data segments and the pattern components are computed as filter responses. At larger timescales, overall scores to measure the similarities between relatively long data segments and the entire pattern are computed by dynamic time warping, which combines the local similarity scores associated with the pattern components, optimizing over a range of intercomponent time intervals. Occurrences of the pattern are identified by local peaks in the overall similarity scores. This approach is developed for point process representations and binary representations of spiking activity, both deriving from a single underlying statistical model. Point process representations are suitable for highly reliable single-unit responses, whereas binary representations are preferred for more variable single-unit responses and multiunit responses. Testing with single units recorded from individual electrodes within the robust nucleus of the arcopallium of zebra finches and with recordings from an array placed within the motor cortex of macaque monkeys demonstrates that the approach can identify occurrences of specified patterns with good time precision in a broad range of neurophysiological data.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3