Response properties of MST parafoveal neurons during smooth pursuit adaptation

Author:

Ono Seiji123,Mustari Michael J.23

Affiliation:

1. Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan;

2. Washington National Primate Research Center, University of Washington, Seattle, Washington; and

3. Department of Ophthalmology, University of Washington, Seattle, Washington

Abstract

Visual motion neurons in the posterior parietal cortex play a critical role in the guidance of smooth pursuit eye movements. Initial pursuit (open-loop period) is driven, in part, by visual motion signals from cortical areas, such as the medial superior temporal area (MST). The purpose of this study was to determine whether adaptation of initial pursuit gain arises because of altered visual sensitivity of neurons at the cortical level. It is well known that the visual motion response in MST is suppressed after exposure to a large-field visual motion stimulus, showing visual motion adaptation. One hypothesis is that foveal motion responses in MST are associated with smooth pursuit adaptation using a small target spot. We used a step-ramp tracking task with two steps of target velocity (double-step paradigm), which induces gain-down or gain-up adaptation. We found that after gain-down adaptation 58% of our MST visual neurons showed a significant decrease in firing rate. This was the case even though visual motion input (before the pursuit onset) from target motion was constant. Therefore, repetitive visual stimulation during the gain-down paradigm could lead to adaptive changes in the visual response. However, the time course of adaptation did not show a correlation between the visual response and pursuit behavior. These results indicate that the visual response in MST may not directly contribute to the adaptive change in pursuit initiation.

Funder

HHS | NIH | National Eye Institute (NEI)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3