The effect of eccentricity on visual motion prediction in peripheral vision

Author:

Hirano Riku1,Numasawa Kosuke1,Yoshimura Yusei1,Miyamoto Takeshi23ORCID,Kizuka Tomohiro4,Ono Seiji4ORCID

Affiliation:

1. Graduate School of Comprehensive Human Sciences University of Tsukuba Ibaraki Japan

2. Graduate School of Medicine Kyoto University Kyoto Japan

3. Japan Society for the Promotion of Science Tokyo Japan

4. Institute of Health and Sport Sciences University of Tsukuba Ibaraki Japan

Abstract

AbstractThe purpose of the current study was to clarify the effect of eccentricity on visual motion prediction using a time‐to‐contact (TTC) task. TTC indicates the predictive ability to accurately estimate the time‐to‐contact of a moving object based on visual motion perception. We also measured motion reaction time (motion RT) as an indicator of the speed of visual motion perception. The TTC task was to press a button when the moving target would arrive at the stationary goal. In the occluded condition, the target dot was occluded 500 ms before the time to contact. The motion RT task was to press a button as soon as the target moved. The visual targets were randomly presented at five different eccentricities (4°, 6°, 8°, 10°, 12°) and moved on a circular trajectory at a constant tangent velocity (8°/s) to keep the eccentricity constant. Our results showed that TTC in the occluded condition showed an earlier response as the eccentricity increased. Furthermore, the motion RT became longer as the eccentricity increased. Therefore, it is most likely that a slower speed perception in peripheral vision delays the perceived speed of motion onset and leads to an earlier response in the TTC task.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3