Mechanisms underlying long-interval cortical inhibition in the human motor cortex: a TMS-EEG study

Author:

Rogasch Nigel C.1,Daskalakis Zafiris J.2,Fitzgerald Paul B.1

Affiliation:

1. Monash Alfred Psychiatry Research Centre, Alfred and Monash University Central Clinical School, Melbourne, Australia; and

2. Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada

Abstract

Long-interval cortical inhibition (LICI) refers to suppression of neuronal activity following paired-pulse transcranial magnetic stimulation (TMS) with interstimulus intervals (ISIs) between 50 and 200 ms. LICI can be measured either from motor-evoked potentials (MEPs) in small hand muscles or directly from the cortex using concurrent electroencephalography (EEG). However, it remains unclear whether EEG inhibition reflects similar mechanisms to MEP inhibition. Eight healthy participants received single- and paired-pulse TMS (ISI = 100 ms) over the motor cortex. MEPs were measured from a small hand muscle (first dorsal interosseus), whereas early (P30, P60) and late (N100) TMS-evoked cortical potentials (TEPs) were measured over the motor cortex using EEG. Conditioning and test TMS intensities were altered, and modulation of LICI strength was measured using both methods. LICI of MEPs and both P30 and P60 TEPs increased in strength with increasing conditioning intensities and decreased with increasing test intensities. LICI of N100 TEPs remained unchanged across all conditions. In addition, MEP and P30 LICI strength correlated with the slope of the N100 evoked by the conditioning pulse. LICI of early and late TEP components was differentially modulated with altered TMS intensities, suggesting independent underlying mechanisms. LICI of P30 is consistent with inhibition of cortical excitation similar to MEPs, whereas LICI of N100 may reflect presynaptic autoinhibition of inhibitory interneurons. The N100 evoked by the conditioning pulse is consistent with the mechanism responsible for LICI, most likely GABAB-mediated inhibition of cortical activity.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3