Repetitive Transcranial Magnetic Stimulation Modulates Brain Connectivity in Children with Self-limited Epilepsy with Centrotemporal Spikes

Author:

She XiweiORCID,Qi Wendy,Nix Kerry C.,Menchaca Miguel,Cline Christopher C.ORCID,Wu Wei,He ZihuaiORCID,Baumer Fiona M.ORCID

Abstract

AbstractObjectiveInterictal epileptiform discharges (IEDs) alter brain connectivity in children with epilepsy; this connectivity change may be a mechanism by which epilepsy induces cognitive deficits. Here, we test whether repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique, modulates connectivity and reduces IEDs in children with epilepsy.MethodsNineteen children with self-limited epilepsy with centrotemporal spikes (SeLECTS) participated in a cross-over study comparing the impact of active vs. sham rTMS on IEDs and brain connectivity. SeLECTS is an epilepsy syndrome affecting the motor cortex, and prior studies show that motor cortices become pathologically hyper-connected to frontal and temporal language cortices. Using a crossover design, we compared the effect of single doses of active versus sham motor cortex rTMS. Connectivity, which was quantified by the weighted phase lag index (wPLI), was measured before and after rTMS using single pulses of TMS combined with EEG (spTMS-EEG). Analyses focused on six regions: bilateral motor cortices and bilateral inferior frontal and superior temporal regions. IEDs were counted in the five minutes before and after rTMS.ResultsActive, but not sham, rTMS significantly and globally decreased wPLI connectivity between multiple regions, with the greatest reductions seen in the superior temporal region connections in the stimulated hemisphere. Additionally, there was a trend suggesting that rTMS decreases IED frequency.InterpretationThese findings underscore the potential of low-frequency rTMS to target pathologic hyperconnectivity and reduce IEDs in children with SeLECTS and potentially other pediatric epilepsy syndromes, offering a promising avenue for therapeutic intervention.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3