Author:
Henrich Michael,Buckler Keith J.
Abstract
Nociceptive neurons play an important role in ischemia by sensing and transmitting information to the CNS and by secreting peptides and nitric oxide, which can have local effects. While these responses are probably primarily mediated by acid sensing channels, other events occurring in ischemia may also influence neuron function. In this study, we have investigated the effects of anoxia and anoxic aglycemia on Ca2+regulation in sensory neurons from rat dorsal root ganglia. Anoxia increased [Ca2+]iby evoking Ca2+release from two distinct internal stores one sensitive to carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) and one sensitive to caffeine, cyclopiazonic acid (CPA), and ryanodine [assumed to be the endoplasmic reticulum (ER)]. Anoxia also promoted progressive decline in ER Ca2+content. Despite partially depolarizing mitochondria, anoxia had relatively little effect on mitochondrial Ca2+uptake when neurons were depolarized but substantially delayed mitochondrial Ca2+release and subsequent Ca2+clearance from the cytosol on repolarization. Anoxia also reduced both sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity and Ca2+extrusion [probably via plasma membrane Ca2+-ATPase (PMCA)]. Thus anoxia has multiple effects on [Ca2+]ihomeostasis in sensory neurons involving internal stores, mitochondrial buffering, and Ca2+pumps. Under conditions of anoxic aglycemia, there was a biphasic and more profound elevation of [Ca2+]i, which was associated with complete ER Ca2+store emptying and progressive, and eventually complete, inhibition of Ca2+clearance by PMCA and SERCA. These data clearly show that loss of oxygen, and exhaustion of glycolytic substrates, can profoundly affect many aspects of cell Ca2+regulation, and this may play an important role in modulating neuronal responses to ischemia.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献