Development of GABAA Receptor-Mediated Inhibitory Postsynaptic Currents in Hippocampus

Author:

Banks Matthew I.1,Hardie Jason B.1,Pearce Robert A.1

Affiliation:

1. Department of Anesthesiology and Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53706

Abstract

Hippocampal CA1 pyramidal cells receive two kinetic classes of GABAA receptor-mediated inhibition: slow dendritic inhibitory postsynaptic currents (GABAA,slow IPSCs) and fast perisomatic (GABAA,fast) IPSCs. These two classes of IPSCs are likely generated by two distinct groups of interneurons, and we have previously shown that the kinetics of the IPSCs have important functional consequences for generating synchronous firing patterns. Here, we studied developmental changes in the properties of GABAA,fast and GABAA,slowspontaneous, miniature, and evoked IPSCs (sIPSCs, mIPSCs, and eIPSCs, respectively) using whole cell voltage-clamp recordings in brain slices from animals aged P10–P35. We found that the rate of GABAA,slow sIPSCs increased by over 70-fold between P11 and P35 (from 0.0017 to 0.12 s−1). Over this same age range, we observed a >3.5-fold increase in the maximal amplitude of GABAA,slow eIPSCs evoked by stratum lacunosum-moleculare (SL-M) stimuli. However, the rate and amplitude of GABAA,slow mIPSCs remained unchanged between P10 and P30, suggesting that the properties of GABAA,slow synapses remained stable over this age range, and that the increase in sIPSC rate and in eIPSC amplitude was due to increased excitability or excitation of GABAA,slow interneurons. This hypothesis was tested using bath application of norepinephrine (NE), which we found at low concentrations (1 μM) selectively increased the rate of GABAA,slow sIPSCs while leaving GABAA,fast sIPSCs unchanged. This effect was observed in animals as young as P13 and was blocked by coapplication of tetrodotoxin, suggesting that NE was acting to increase the spontaneous firing rate of GABAA,slow interneurons and consistent with our hypothesis that developmental changes in GABAA,slow IPSCs are due to changes in presynaptic excitability. In contrast to the changes we observed in GABAA,slow IPSCs, the properties of GABAA,fast sIPSCs remained largely constant between P11 and P35, whereas the rate, amplitude, and kinetics of GABAA,fast mIPSCs showed significant changes between P10 and P30, suggesting counterbalancing changes in action potential-dependent GABAA,fast sIPSCs. These observations suggest differential developmental regulation of the firing properties of GABAA,fast and GABAA,slow interneurons in CA1 between P10 and P35.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3