Endocannabinoids Mediate Tachykinin-Induced Effects in the Lamprey Locomotor Network

Author:

Thörn Pérez Carolina,Hill Russell H.,Manira Abdeljabbar El.,Grillner Sten

Abstract

The spinal network underlying locomotion in lamprey is composed of excitatory and inhibitory interneurons mediating fast ionotropic action. In addition, several modulator systems are activated as locomotion is initiated, including the tachykinin system and the metabotropic glutamate receptor 1 (mGluR1), the latter operating partially via the endocannabinoid system. The effects of mGluR1 agonists and tachykinins resemble each other. Like mGluR1 agonists, the tachykinin substance P accelerates the burst rate and reduces the crossed inhibition in an activity-dependent fashion. The present study therefore explores whether tachykinins also use the endocannabinoid system to modulate the locomotor frequency. By monitoring fictive locomotion, we were able to compare the facilitatory effects exerted by applying substance P (1 μM, 20 min), on the burst frequency before and during application of the endocannabinoid CB1 receptor antagonist AM251 (2–5 μM). By using two different lamprey species, we showed that the response to substance P on the burst frequency is significantly reduced during the application of AM251. To examine whether endocannabinoids are involved in the substance P–mediated modulation of reciprocal inhibition, the commissural axons were stimulated, while recording intracellularly from motoneurons. We compare the effect of substance P on the amplitude of the contralateral compound glycinergic inhibitory postsynaptic potential (IPSP) in control and in the presence of AM251. The blockade of CB1 receptors reduced the substance P–mediated decrease in the amplitude by 29%. The present findings suggest that the effects of substance P on the increase in the locomotor burst frequency and depression of IPSPs are mediated partially via release of endocannabinoids acting through CB1 receptors.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3