Modulatory Effect of Substance P to the Brain Stem Locomotor Command in Lampreys

Author:

Brocard Frédéric,Bardy Cédric,Dubuc Réjean

Abstract

Substance P initiates locomotion when injected in the brain stem of mammals. This study examined the possible role of this peptide on the supraspinal locomotor command system in lampreys. Substance P was bath applied or locally injected into an in vitro isolated brain stem, and the effects of the drug were examined on reticulospinal cells and on the occurrence of swimming in a semi-intact preparation. Bath applications of substance P induced sustained depolarizations occurring rhythmically in intracellularly recorded reticulospinal cells. Spiking activity was superimposed on the depolarizations and swimming was induced. The sustained depolarizations were abolished by tetrodotoxin, and substance P did not affect the membrane resistance of reticulospinal cells nor their firing properties, suggesting that it did not directly effect reticulospinal cells. To establish where the effects were exerted, successive lesions of the brain stem were made as well as local applications of the drug in the brain stem. Removing the mesencephalon abolished the sustained depolarizations, whereas large ejections of the drug in the mesencephalon excited reticulospinal cells and elicited bouts of swimming. More local injections into the mesencephalic locomotor region (MLR) also elicited swimming. After an injection of substance P, the current threshold needed to induce locomotion by MLR stimulation was decreased, and the size of the postsynaptic responses of reticulospinal cells to MLR stimulation was increased. Substance P also reduced the frequency of miniature spontaneous postsynaptic currents in reticulospinal cells. Taken together, these results suggest that substance P plays a neuromodulatory role on the brain stem locomotor networks of lampreys.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3