Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells

Author:

Mastronarde D. N.

Abstract

1. The shared inputs to cat retinal ganglion cells have been investigated by studying correlations in the maintained firing of neighboring ganglion cells. The firing of one cell was recorded from its axon in the optic tract, while that of a neighboring cell was simultaneously recorded with a second electrode in the retina. The recorded cells were of the X- or Y-type and viewed a uniform screen having a luminance of 10 cd/m2. 2. Ganglion cells with overlapping receptive-field centers showed two basic forms of correlated firing: if they had the same center sign (both on-center or both off-center), then they tended to fire at the same time, as shown by a peak in their cross-correlogram; but if they had opposite center signs (an on- and and off-center cell), they tended not to fire at the same time, as shown by a well, or dip, in their cross-correlogram. 3. Both of these tendencies were strongest for cells that were close together and did not appear for cells with nonoverlapping receptive-field centers. The strongest correlations were between neighboring Y-cells, cells with large fields, and the weakest were between X-cells, cells with small fields. In general, the strength of the correlations depended primarily on the area of the overlap between fields. 4. These correlations in maintained firing appear to be principally or entirely caused by shared inputs to the ganglion cells from more distal retinal neurons. The signals from these distal neurons appear to have strong, brief (4-8 ms), well-defined effects on ganglion cells, which are observed even in the absence of a visual stimulus. The inputs responsible for the correlated firing are thus referred to as spontaneously active inputs or simply as active inputs. 5. An analysis of the features in the various types of cross-correlograms supports the following statements about these spontaneously active inputs. a) There are two types of active inputs: inputs excitatory to on-center cells and simultaneously inhibitory to off-center center cells and inputs excitatory to off-center cells and simultaneously inhibitory to on-center cells. b) The active inputs of each type provide excitation to both X- and Y-cells of one center sign and inhibition to both X- and Y-cells of the other center sign. There is no evidence for a special class of more selective inputs providing input only to X-cells or only to Y-cells. c) Active inputs account for the majority (about 80%) of the spikes in the maintained activity of Y-cells but only a small fraction (about 15%) of the spikes in the maintained activity of X-cells. 6. A likely source of the active input signals appears to be spiking amacrine cells with a low rate of spontaneous activity.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 222 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3