Strong, but not weak, noise correlations are beneficial for population coding

Author:

Mahuas Gabriel,Buffet Thomas,Marre Olivier,Ferrari Ulisse,Mora ThierryORCID

Abstract

Neural correlations play a critical role in sensory information coding. They are of two kinds: signal correlations, when neurons have overlapping sensitivities, and noise correlations from network effects and shared noise. It is commonly thought that stimulus and noise correlations should have opposite signs to improve coding. However, experiments from early sensory systems and cortex typically show the opposite effect, with many pairs of neurons showing both types of correlations to be positive and large. Here, we develop a theory of information coding by correlated neurons which resolves this paradox. We show that noise correlations are always beneficial if they are strong enough. Extensive tests on retinal recordings under different visual stimuli confirm our predictions. Finally, using neuronal recordings and modeling, we show that for high dimensional stimuli noise correlation benefits the encoding of fine-grained details of visual stimuli, at the expense of large-scale features, which are already well encoded.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3