Modulation of central gustatory coding by temperature

Author:

Wilson David M.1,Lemon Christian H.1

Affiliation:

1. Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri

Abstract

Changes in oral temperature can influence taste perception, indicating overlap among mechanisms for taste and oral somesthesis. Medullary gustatory neurons can show cosensitivity to temperature, albeit how these cells process combined taste and thermal input is poorly understood. Here, we electrophysiologically recorded orosensory responses (spikes) from 39 taste-sensitive neurons in the nucleus tractus solitarii of anesthetized mice during oral delivery of tastants adjusted to innocuous cool (16 and 18°C), room (22°C, baseline), and warm (30 and 37°C) oral temperatures. Stimuli included (in mM) 100 sucrose, 30 NaCl, 3 HCl, 3 quinine, an umami mixture, and water. Although cooled water excited few cells, water warmed to 30 and 37°C significantly excited 33% and 64% of neurons, respectively. Warmth induced responses of comparable magnitude to room temperature tastants. Furthermore, warming taste solutions influenced the distribution of gustatory responses among neurons and increased ( P < 0.05) neuronal breadth of tuning across taste qualities. The influence of warmth on response magnitude was stimulus specific. Across neurons, warming facilitated responses to sucrose and umami in a superadditive manner, as these responses exceeded ( P < 0.05) the arithmetic sum of activity to warming alone and the taste stimulus tested at room temperature. Superadditive increases ( P < 0.05) in responding were also noted in some cells for warmed HCl. Yet warming induced only simple additive or subtractive effects on responses to quinine and NaCl. Data show temperature is a parameter of gustatory processing, like taste quality and concentration, in medullary circuits for taste.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3