Intensity and frequency characteristics of pacinian corpuscles. I. Action potentials

Author:

Bolanowski S. J.,Zwislocki J. J.

Abstract

The mechanisms by which pacinian corpuscles, isolated from cat mesentery, transduce mechanical stimuli have been measured for directly applied sinusoidal deformations. Stimulus-response relationships were measured as follows: intensity characteristics, which relate the receptor-potential magnitude or the neural firing rate to stimulus intensity; amplitude-frequency characteristics, which relate the stimulus amplitude to stimulus frequency for a given response criterion; and phase-frequency characteristics, which relate the phase angle between the stimulus and the receptor response to stimulus frequency. This report, the first in a series of three, deals with the characteristics reflected in the neural firing rate. The two reports that follow deal with the receptor potential, which, if of sufficient amplitude, generates the propagated action potential. In the majority of the pacinian corpuscles investigated, the intensity characteristics for neural firing rates were steep at low stimulus intensities and plateaued at submultiples and multiples of the stimulus frequency as stimulus intensity was increased. Poststimulus time and interval histograms reveal that the plateaus occur as a result of phase locking to the stimulus. The submultiples and multiples of stimulus frequency at which phase locking was found and the length of the plateaus depended on stimulus frequency. These plateaus were eliminated with the use of narrow-band noise stimuli. The amplitude-frequency characteristics obtained with either a criterion of constant firing rate or that of a constant number of neural spikes per stimulus cycle were U-shaped functions. Their positions along both the intensity and frequency continua are affected by response criterion. For example, the mean (n = 19) amplitude-frequency characteristic generated with a constant firing rate criterion of 1 spike/s has a maximum sensitivity of about -37.0 dB re 1-micron peak and a best frequency (BF, stimulus frequency where maximum sensitivity occurs) of 465 Hz. The bandwidth, measured by Q3 dB, is 1.02. Alternatively, the average (n = 16) amplitude-frequency characteristic obtained with a response criterion of 1 spike per stimulus cycle has a maximum sensitivity of about -25.0 dB re 1-micron peak, a BF of 270 Hz and Q3 dB value of 1.16. Spontaneous activity (SPA; activity in the absence of controlled stimuli) was found in 13.6% of the pacinian corpuscles. Intensity characteristics and frequency characteristics of these corpuscles show features similar to those of corpuscles without spontaneous activity except that the intensity characteristics asymptote to SPA levels at low stimulus intensities.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3