Compensation for intrinsic muscle stiffness by short-latency reflexes in human triceps surae muscles

Author:

Allum J. H.,Mauritz K. H.

Abstract

The incremental torque resisting rotation of the foot about the ankle joint was studied in normal seated subjects. Prior to each rotation, subjects were required to activate triceps surae (TS) muscles and maintain a constant plantar flexion torque (range 6-14 N X m) on a platform whose position was controlled by a torque motor. Subjects were instructed to increase torque as rapidly as possible once rotation commenced. Rotations ranged from 0.5 to 14 degrees amplitude and from 20 to 300 degrees/s maximum velocity. The torque in response to rotations stretching TS muscles and releasing tibialis anterior (TA) muscles increased steeply and then rapidly decreased with stretch velocity. At approximately 60 ms from stretch onset, the torque reduction terminated, torque then increased again until it began to level off at approximately 120 ms. A further large increase in torque occurred at 180 ms. A burst of short-latency (SL) electromyographic (EMG) activity in soleus (SOL) commenced at 40 ms, and was followed by a second burst at approximately 68 ms, provided that stretch deceleration started later than 20 ms after stretch onset. A period of sustained EMG activity in SOL commenced at approximately 130 ms (long-latency (LL) activity). Incremental torque in response to stretch of TA and release of TS muscles initially showed a step decrease followed by a reversal of the torque trajectory back toward base line. This change was arrested at 60 ms and torque then remained approximately constant until a large increase in torque at 180 ms. Ischemia was used to reduce SL EMG reflexes without significantly modifying the background EMG activity. A comparison between torque curves under control and ischemic conditions indicated that SL EMG activity in TS muscles recruited the force responsible for terminating the torque reduction coincident with decreasing stretch velocity. The torque response prior to the onset of force recruited by SL activity was attributed to the intrinsic properties of active muscle fibers. Thereafter, until the onset of LL activity, the torque response was attributed to intrinsic and reflex-recruited force. Torque in these two time periods was compared under a variety of stretch conditions in order to test the hypothesis that force recruited by segmental reflexes compensates for the non-linear stretch properties of active TS muscles. The relationships of SL EMG amplitudes and areas to stretch velocity and acceleration were also examined.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3