Determinants of joint stiffness and jumping height during drop jump

Author:

Kosaka Takehiro1,Sasajima Shuhei1,Yasuda Ayaka1,Mino Soushi1,Kubo Keitaro1ORCID

Affiliation:

1. Department of Life Science The University of Tokyo, Meguro Tokyo Japan

Abstract

AbstractThe present study aimed to examine the effects of muscle‐tendon mechanical properties and electromyographic activity on joint stiffness and jumping height and to explore the determinants of joint stiffness and jumping height. Twenty‐nine males performed unilateral drop jumps at three drop heights (10, 20, and 30 cm) using only the ankle joint on the sledge apparatus. Ankle joint stiffness, jumping height, and electromyographic activity of the plantar flexor muscles were measured during drop jumps. Active muscle stiffness of the medial gastrocnemius muscle was calculated according to changes in the estimated muscle force and fascicle length during fast stretching at five different angular velocities (100, 200, 300, 500, and 600 deg s−1) after submaximal isometric contractions. Tendon stiffness and elastic energy were measured during ramp and ballistic contractions. Active muscle stiffness was significantly correlated with joint stiffness, except for a few conditions. Tendon stiffness measured during ramp and ballistic contractions was not significantly correlated with joint stiffness. The ratios of electromyographic activity before landing and during the eccentric phase to that during the concentric phase were significantly correlated with joint stiffness. In addition, jumping heights at 10 and 20 cm (except for 30 cm) drop heights were strongly associated with the tendon elastic energy, whereas no other measured variables showed significant correlations with jumping heights. These results suggested that (1) joint stiffness is determined by active muscle stiffness and electromyographic activity patterns during jumping, and (2) jumping height is determined by tendon elastic energy.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Physiology (medical),Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3